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Abstract
A new general form of the multi-Yukawa, multicomponent closure of the
Ornstein–Zernike equation for factored interactions is derived. The general
solution is given in terms of an M × M scaling matrix Γ obtained by solving M
(equal to the number of Yukawa terms in the closure) equations together with
M(M − 1) symmetry conditions

2π K (n)
∑

j

ρ j X (n)

j B̂ j(zn) + zn

∑
k

ρka(n)

k �
(n)

k

+
∑

m

zn

zn + zm

{∑
k

ρka(n)
k a(m)

k

}∑
j

ρ j X (m)
j �

(n)
j = ˜̃∆(n)

where ˜̃∆(n)

is of higher order in the density, and all quantities are algebraic
functions of Γ.

Explicit formulae for the thermodynamic properties are also provided.

1. Introduction

The density functional developed by Yasha Rosenfeld [1, 2] is, no doubt, a great advance in
the treatment of fluid systems. The extension of these methods to systems with general soft
interactions such as Coulomb [3] and screened Coulomb interactions is still an open problem.

There is an enormous wealth of problems, ranging from engineering applications to
biological research, polymers, colloidal systems, water and ionic solutions, which can be
formulated as closures of some kind of either a scalar or matrix Ornstein–Zernike (OZ)

* We dedicate this paper to Yasha Rosenfeld, a giant in condensed matter physics.
3 Author to whom any correspondence should be addressed.
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equation. These closures can always be expressed by a sum of exponentials, which form
a complete basis set if we allow for complex numbers [4, 5].

The discussion of numerical examples such as the equation of state for simple fluids [6]
and the ’ YUKAGUA’ model of water [7] is left for future publications. The YUKAGUA
model is the octupole model of water with the Yukawa closure. The analytic solution of the
sticky octupole model was discussed in a paper by Blum and Vericat [8].

While the initial motivation was to study simple approximations such as the mean spherical
approximation (MSA) [9] or generalized mean spherical approximation (GMSA)[10], the
availability of closed-form solutions for the general closure of the hard-core OZ equation
makes it possible to write down analytical solutions for any given approximation that can be
formulated by writing the direct correlation function ci j(r) outside the hard core as

ci j(r) =
M∑

n=1

K (n)
i j e−zn(r−σi j )

/
r =

M∑
n=1

K(n)
i j e−znr

/
r. (1)

This is the most general form of the closure of the OZ equation. As was discussed
elsewhere by us [11], the first M0 � M terms correspond to the interaction energy and the
remainder to a parametrized form of the closure. We have called this approximation the mean
scaling approximation (MESCA). Clearly when M0 = M , then the MESCA is identical to the
MSA. In this equation K (n)

i j is the interaction/closure constant used in the general solution first

found by Blum and Høye (which we will call BH78) [12], while K(n)
i j is the definition used in

the later general solution by Blum, Vericat and Herrera (BVH92 in what follows) [13]. In this
work we shall use the more common notation of BVH92. The case of factored interactions
discussed by Blum [14] was simplified by Ginoza [15–18], who found that, as in the case of
electrolytes [19], the solution of the one-exponent case could be expressed in terms of a single
scaling parameter �. In the factorizable case we have

K (n)
i j = K (n)δ

(n)
i δ

(n)
j K(n)

i j = K (n)d(n)
i d(n)

j (2)

where we have defined

δ
(n)
i = d(n)

i e−znσi /2. (3)

The general solution of this problem was formulated by Blum et al [13] in terms of a
scaling matrix Γ. The full solution was given recently by Blum et al [4, 20, 21]. For only one
component the matrix Γ is assumed diagonal and explicit expressions for the closure relations
for any arbitrary number of Yukawa exponents M are obtained. The solution is remarkably
simple in the MSA since then explicit formulas for the thermodynamic properties are obtained.

In the next section we review and upgrade our previous work. In section 3 we discuss
the closure, and derive new formulae for the general case. In section 4 we review briefly
the symmetry conditions, in section 5 we derive general expressions for the thermodynamic
properties and finally in section 6 we show that our equations reduce correctly to the 1-Yukawa
case.

2. Summary of previous work

We study the OZ equation

hi j (12) = ci j(12) +
∑

k

∫
d3 hik(13)ρkck j (32) (4)

where hi j (12) is the molecular total correlation function, ci j(12) is the molecular direct
correlation function, ρi is the number density of the molecules i , i = 1, 2 is the position
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�ri , r12 = |�r1 − �r2| and σi j is the distance of closest approach of two particles i, j . The direct
correlation function is

ci j(r) =
M∑

n=1

K (n)
i j e−zn(r−σi j )

/
r, r > σi j (5)

and the pair correlation function is

hi j (r) = gi j(r) − 1 = −1, r � σi j . (6)

We use the Baxter–Wertheim (BW) factorization of the OZ equation

[I + ρH̃(k)][I − ρC̃(k)] = I (7)

where I is the identity matrix, and we have used the notation

H̃(k) = 2
∫ ∞

0
dr cos(kr)J(r) (8)

C̃(k) = 2
∫ ∞

0
dr cos(kr)S(r). (9)

The matrices J and S have matrix elements

Ji j(r) = 2π

∫ ∞

r
ds shi j(s) (10)

Si j (r) = 2π

∫ ∞

r
ds sci j(s) (11)

[I − ρC̃(k)] = [I − ρQ̃(k)][I − ρQ̃T(−k)] (12)

where Q̃T(−k) is the complex conjugate and transpose of Q̃(k). The first matrix is non-singular
in the upper half complex k-plane, while the second is non-singular in the lower half complex
k-plane.

It can be shown that the factored correlation functions must be of the form

Q̃(k) = I − ρ

∫ ∞

λ j i

dr eikr Q̃(r) (13)

where we used the following definition:

λ j i = 1
2 (σ j − σi ) (14)

S(r) = Q(r) −
∫

dr1 Q(r1)ρQT(r1 − r). (15)

Similarly, from equations (12) and (7) we obtain, using the analytical properties of Q and
Cauchy’s theorem,

J(r) = Q(r) +
∫

dr1 J(r − r1)ρQ(r1). (16)

The general solution is discussed in [14, 15], and yields

qi j(r) = q0
i j(r) +

M∑
n=1

D(n)
i j e−znr λ j i < r (17)

q0
i j(r) = (1/2)A j[(r − σ j/2)2 − (σi/2)2] + β j [(r − σ j/2) − (σi/2)]

+
M∑

n=1

C (n)
i j e−znσ j /2[e−zn(r−σ j /2) − e−znσi /2] λ j i < r < σi j . (18)
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From here

qi j(λ j i) = −σiβ j −
M∑

m=1

[
(C (m)

i j + D(m)
i j )(1 − e−zmσi ) + D(m)

i j e−zmσi
]
e−zmλ j i (19)

q ′
i j(σ j i) = A j(σi/2) + β j −

M∑
m=1

zm(C (m)
i j + D(m)

i j )e−zmσ j i (20)

which will be used below in connection with the symmetry requirements for the factor
functions. Furthermore the coefficients of all the exponentials must satisfy equation (16)

C (n)
i j + D(n)

i j = 2π

zn

∑
k

ρk g̃(n)
ik D(n)

k j (21)

where

D(n)
i j = −δ

(n)
j a(n)

j eznσi j . (22)

The solution of this system of equations [13] yields in the factored case

A j = A0
j +

π

	

∑
n

a(n)
j P(n) (23)

β j = β0
j +

∑
n

a(n)
j 	(n) (24)

where

A0
j = 2π

	

[
1 + (1/2)ζ2

π

	
σ j

]
(25)

β0
j = π

	
σ j (26)

and (
π

	

)
P(n) = 1

zn

∑
�

ρ�

[
A0

� X (n)

� + 2β0
�

(
zn X (n)

� − �
(n)

�

)]
. (27)

Alternatively

P(n) =
(

ζ2 − 	zn

π

)
	(n) +

∑
�

ρ�

[
σ 2

� φ0(σ�zn)B̂�(zn) + σ�δ
(n)

�

]
(28)

	(n) = − 1

z2
n

∑
�

ρ�[X (n)
� A0

� + β0
� (zn X (n)

� − 2�
(n)
� )]. (29)

Also

	(n) = − 2π

z2
n	

∑
�

ρ�

[
(1 + znσ�/2)δ

(n)
�

] − 2π

	

∑
�

ρ�σ
3
� ψ1(znσ�)B̂�(zn). (30)

We notice that

P(n) =
∑

�

ρ�β
0
� X (n)

� − zn	
(n). (31)

We recall that

�
(n)
j = B̂ j(zn) + (1 + σ j zn/2)	(n) + 1

2σ j

∑
�

ρ�β
0
� X (n)

� (32)

X (n)
i = δ

(n)
i + σi B̂i(zn)φ0(znσi ) + σi	

(n) (33)
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which now read

�
(n)
j = ξ̂

(n)
j +

∑
�

Î(n)
j� B̂�(zn) (34)

where

Î(n)

j� = δ j� + ρ�

[
β0

�

σ 2
j

2
φ0(znσ j ) − (A0

� + znβ
0
� )σ

3
j ψ1(znσ j ))

]
(35)

and

ξ̂
(n)
j = − 1

z2
n

∑
�

ρ�δ
(n)
�

[
znβ

0
j + A0

j

(
1 +

znσ�

2

)]
. (36)

Furthermore

X (n)

j = γ
(n)

j +
∑

�

Ĵ (n)

j� B̂�(zn). (37)

Here

Ĵ (n)
j� = δ j�σ jφ0(znσ�) − 2ρ�β

0
� σ

3
j ψ1(znσ j ) (38)

and

γ̂
(n)
j = δ

(n)
j − 2β0

j

z2
n

∑
�

ρ�δ
(n)
�

(
1 +

znσ�

2

)
. (39)

Remember also that

ζn =
∑

k

ρkσ
n
k (40)

	 = 1 − πζ3/6 (41)

g̃i j(s) =
∫ ∞

0
dr rgi j(r)e−sr (42)

B̂ j(zn) = 2π
∑

i

ρiδ
(n)

i g̃i j(zn)eznσi j . (43)

Also

ψ1(x) = [1 − x/2 − (1 + x/2)e−x ]/(x3) = [−1 + (1 + x/2)φ0(x)]/x2 (44)

φ1(x) = [1 − x − e−x]/(x2) = xψ1(x) − φ0(x)/2 (45)

φ0(x) = [1 − e−x ]/(x). (46)

Furthermore from equations (33) and (32) we obtain by eliminating B̂i(zn)

X (n)
i − σiφ0(znσi )�

(n)
i = δ

(n)
i − 1

2σiφ0(znσi )
∑

�

ρ�β
0
� X (n)

� − σ 3
i z2

nψ1(znσi )	
(n) (47)

or ∑
�

{
ρ�

ρ j

}
Ĵ

(n)

�j �
(n)
� =

∑
�

{
ρ�

ρ j

}
Î (n)
�j X (n)

� − δ
(n)
j (48)

which can be rewritten as∑
�

ρ�{�(n)

� γ̂
(n)

� − X (n)

� ξ̂
(n)

� } = E (n) (49)

where

E (n) =
∑

�

ρ� B̂�(zn)δ̂
(n)
� . (50)
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2.1. The Laplace transforms

From equation (16) we obtain the Laplace transform of the pair correlation function

2π
∑

�

g̃�(s)[δ�j − ρ�q̃�j(is)] = q̃0′
i j (is) (51)

where

q̃0′
i j (is) =

∫ ∞

σi j

dr e−sr [q0
i j(r)]′ = [(1 + sσi/2)A j + sβ j ]e−sσi j /s2

−
∑

m

zm

s + zm
e−(s+zm)σi j C (m)

i j . (52)

The Laplace transform of equations (17) and (18) yields

esλ j i q̃i j(is) = σ 3
i ψ1(sσi )A j + σ 2

i φ1(sσi )β j +
∑

m

1

s + zm
(53)

× [
(C (m)

i j + D(m)
i j )e−zmλ j i − C (m)

i j e−zmσ j i − zmσiφ0(sσi )C
(m)
i j e−zmσ j i

]
.

This result will be used below.

3. The closure

The MSA closure condition obtained from equation (5) is

2π K (n)δ
(n)
i δ

(n)
j /zn =

∑
�

D(n)
i� [δ�j − ρ�q̃ j�(izn)]. (54)

Using the results of the last section we obtain the result of BVH92 [13]

2π K δ
(n)
j /zn +

∑
�

a(n)

� I(n)

j� −
∑

m

1

zn + zm

{∑
k

ρka(n)
k a(m)

k

}
[∑

�

J (n)
j� [�(m)

� − zm X (m)
� ] − I(n)

j� X (m)
�

]
= 0

(55)

where we are using the new symbols

I(n)
j� = Î(n)

�j

ρ�

ρ j
; J (n)

j� = Ĵ (n)
�j

ρ�

ρ j
. (56)

We multiply now equation (55) by

ρ j B̂(n)
j δ

(n)
j (57)

and sum over the index j . Then, using equations (34) and (37) we obtain

2π
K (n)

zn

∑
j

ρ jδ
(n)
j B̂(n)

j −
∑

�

ρ�a(n)
� ξ̂

(n)
�

+
∑

m

1

zn + zm

{∑
k

ρka(n)
k a(m)

k

}[∑
�

[�(m)
� − zm X (m)

� ]γ̂ (n)
� − X (m)

� ξ̂
(n)
�

]
= 0.

(58)

This can be written in the form∑
j

ρ jδ
(n)

j

[
2π

K (n)

zn
B̂(n)

j +
∑

m

1

zn + zm

{∑
k

ρka(n)

k a(m)

k

}
[�(m)

j − zm X (m)

j ]

]
(59)

−
∑

�

ρ�a(n)
� ξ̂

(n)
� +

∑
m

1

zn + zm

{∑
k

ρka(n)
k a(m)

k

}

×
∑

�

ρ�([�
(m)
� − zm X (m)

� ](γ̂ (n)
� − δ̂

(n)
� ) − X (m)

� ξ̂
(n)
� ) = 0.
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3.1. The alternative closure

Combining equation (5) with (51), we now obtain an expression for the excess MSA energy
parameter due to the interaction n

2π

zn

∑
�

ρ�g̃ j�(zn)K (n)

i� = 1

2π

∑
�

ρ�D(n)

i� q̃0′
j�(izn). (60)

For the factored case we obtain, also using equation (43),

K (n)

zn
B̂ j(zn) = − 1

2π

∑
�

ρ�a(n)

� eznσ j� q̃0′
j�(izn). (61)

Using the results of the previous subsection we obtain

2π K (n) B̂ j(zn) = zn

∑
�

ρ�a(n)

�

{
− 1

z2
n

[
A�

(
1 +

znσ j

2

)
+ znβ�

]
+

∑
m

zm

zn + zm
e−zmσ j�C (m)

j�

}
.

(62)

After some algebra

2π K (n) B̂ j(zn) =
∑

m

zn

zn + zm

{∑
k

ρka(n)
k a(m)

k

}
[−�

(m)
j + zm X (m)

j ] + 	̃ j (zn) (63)

where

	̃ j (zn) = −
∑

�

ρ�a(n)

�

{
1

zn
A0

�

(
1 +

znσ j

2

)
+ β0

�

}

−
∑

m

∑
�

ρ�a(n)
� a(m)

�

{
π

zn	
P(m) +

zm

zn + zm

[
	(m) +

σ jπ

2	
P(m)

]}
. (64)

This equation is equal to equation (75) of BVH92 [13] (which had two typos)

2π K (n) B̂(n)

j /zn = − 2π

	z2
n

∑
�

ρ�a(n)

�

[
1 + znσ�/2 + σ�

[(
1 + ζ2

π

2	
σ j

)
zn

2
+ ζ2

π

2	

]]

−
∑

m

1

zn + zm

{∑
k

ρka(n)
k a(m)

k

}[
�

(m)
j − zm X (m)

j +
zm

zn
	(m)

+
π

	z2
n

P(m)(zn + zm + σ j znzm/2)

]
(65)

and can be written as

2π K (n) B̂(n)
j =

∑
m

{∑
k

ρka(n)
k a(m)

k

}[
zn

zn + zm
(zmδ

(m)
j − B̂(m)

j e−zmσ j ) + 	(m)

+
π

zn	
P(m)

(
1 +

znσ j

2

)]
−

∑
�

ρ�a(n)
�

{
1

zn
A0

�

(
1 +

znσ j

2

)
+ β0

�

}
. (66)

The closure of our problem can also be obtained from equation (63) by contracting this
equation with ρ j X (n)

j : we obtain

2π K (n)
∑

j

ρ j X (n)
j B̂ j(zn) =

∑
m

1

zn + zm

{∑
k

ρka(n)
k a(m)

k

}∑
j

ρ j X (n)
j [−�

(m)
j + zm X (m)

j ]

+
∑

j

ρ j X (n)

j 	̃ j(zn) (67)
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which can be expressed as

2π K (n)
∑

j

ρ j X (n)
j B̂ j(zn) = −zn

∑
k

ρka(n)
k �

(n)
k

−
∑

m

zn

zn + zm

{∑
k

ρka(n)
k a(m)

k

}∑
j

ρ j X (m)
j �

(n)
j + ˜̃∆(n)

(68)

with

˜̃∆(n) =
∑

j

ρ j X (n)

j 	̃ j(zn)

or also as

2π K (n)
∑

j

ρ j X (n)

j �
(n)

j = −zn

∑
k

ρka(n)

k �
(n)

k

−
∑

m

zn

zn + zm

{∑
k

ρka(n)
k a(m)

k

}∑
j

ρ j X (m)
j �

(n)
j + ˜̃∆(n)

p (69)

with

˜̃∆(n)

p =
∑

j

ρ j X (n)
j

{
	̃ j(zn) + 2π K (n)

[
(1 + σ j zn/2)	(n) + 1

2β0
j

∑
�

ρ�β
0
� X (n)

�

]}
. (70)

This yields a new set of M equations for the scaling matrix Γ [11, 13]. The remaining M(M−1)

parameters are obtained from the symmetry relations that we shall discuss in the next section.
This equation will be used below to compute various physical quantities of interest, such as
the pair distribution functions and excess thermodynamic properties. We notice that in all of
the equations of this section the variable zn is completely interchangeable with the Laplace
variable s. For example, instead of equation (63) we could have written

2π K (n) B̂ j(s) =
∑

m

s

s + zm

{∑
k

ρka(n)

k a(m)

k

}
[−�

(m)

j + zm X (m)

j ] + 	̃ j(s). (71)

4. Symmetry

A full solution of the multi-Yukawa, multicomponent mixture requires the introduction of a
scaling parameter. The most general scaling relation is obtained comparing equations (32)
and (33)

�
(n)
i = −

∑
m

�nm X (m)
i (72)

where �mn is an M × M matrix of scaling parameters. From the symmetry of the direct
correlation function at the origin, equation (15),

qi j(λ j i) = q ji(λi j) (73)

which from equations (17) and (18) is equivalent to∑
n

X (n)
i a(n)

j =
∑

n

X (n)
j a(n)

i (74)

which in turn implies that

a(n)

i =
∑

m

�nm X (m)

i (75)
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and also that there are M(M − 1)/2 symmetry relations

�mn = �nm . (76)

From the symmetry of the contact pair correlation function equation (16) we obtain, using
equations (17) and (18),

gi j(σi j) = g ji(σi j) qi j(σi j)
′ = q ji(σi j)

′ (77)

which from equations (32) and (33) are∑
n

(�
(n)
i − zn X (n)

i )a(n)
j =

∑
n

(�
(n)
j − zn X (n)

j )a(n)
i (78)

from which we obtain the scaling relation

�
(n)
i − zn X (n)

i =
∑

m

ϒnma(m)
i (79)

and a new set of M(M − 1)/2 symmetry relations

ϒmn = ϒnm . (80)

The three scaling matrices Γ,Λ and Υ are related to each other. From equations (72), (76)
and (79) we obtain by substitution

−(Γ + z · I) = Υ · Λ (81)

where z is a diagonal matrix of elements zn , and I is the unit matrix.
Furthermore, using the scaling relations we obtain

M̃ · Λ = Γ (82)

where the matrix M̃ has elements

[M̃ ]nm = 1

zn + zm

∑
�

ρ�[zm X (n)
� X (m)

� + X (m)
� �

(n)
� − X (n)

� �
(m)
� ]. (83)

Solving these equations yields

M̃−1 · Γ = Λ (84)

and

−(I + z · Γ−1) · M̃ = Υ. (85)

The symmetry requirements are then

M̃−1 · Γ = ΓT · [M̃−1]T (86)

and

(I + z · Γ−1) · M̃ = M̃T · (I + [Γ−1]T · z) (87)

where the superscript T indicates that the transpose of the matrix is taken. We have therefore
a total of M(M − 1) symmetry relations, which together with the M closure equations gives
the required equations for the M2 elements of the matrix Γ.
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5. Thermodynamic properties

We compute the excess thermodynamic properties of the mixture using the equations of Blum
and Høye [12, 22, 23]. While most of the discussion is that of BVH92, we shall use here the
notation of the earlier work BH78 [12].

The energy density 	E is (see for example [12, 22])

β	E

V
= −2π

∑
i j

ρiρ j

∑
n

g̃(n)
i j K (n)

i j . (88)

We remember that in the factored case using equation (2) for K (n)

i j , we obtain an expression

for the configurational energy in terms of B̂i(zn) defined in equation (43).
The excess energy density is

β	E

V
= −

∑
i,n

ρiδ
(n)
i K (n) B̂i(zn). (89)

The excess virial pressure Pv is the expression

β	Pv = 2π

3

∑
i j

ρiρ jσ
3
i j{gi j(σi j − g0

i j(σi j)} + J. (90)

The excess energy pressure P E is

β	P E = π

3

∑
i j

ρiρ jσ
3
i j {[gi j(σi j )]2 − [g0

i j(σi j )]2} + J. (91)

It is possible to write J in terms of B̂i(s) (see equation (43)) and β	E (see [12, 22]):

J = 1

3

∑
j,n

ρ jδ
(n)

j K (n)

[
zn

∂ B̂ j(s)

∂s
− B̂ j(s)

]
s=zn

= 1

3

∑
j,n

ρ jδ
(n)
j K (n)

[
zn

∂ B̂ j(s)

∂s

]
s=zn

− β	E

3V
. (92)

For factored interactions we obtain using equation (71)

2π K (n) B̂ j(s) =
∑

m

s

s + zm

{∑
k

ρka(n)
k a(m)

k

}[−�
(m)
j + zm X (m)

j

]
+ 	̃ j(s). (93)

The excess Helmholtz free energy is

β	A

V
= β	E

V
− β	P E +

1

8π2

∑
j

ρ j {[A j]2 − [A0
j ]

2}. (94)

The excess entropy is then

	S

kV
= π

3

∑
i j

ρiρ jσ
3
i j{[gi j(σi j )]2 − [g0

i j(σi j )]2} + J − 1

8π2

∑
j

ρ j{[A j ]2 − [A0
j ]

2}. (95)

The excess energy pressure P E is

β	P E = π

3

∑
i j

ρiρ jσ
3
i j {[gi j(σi j )]

2 − [g0
i j(σi j )]

2} + J. (96)
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6. The 1-Yukawa limit

Using the results of section [6, 17, 18], we recover the simple analytic expressions [16] for the
internal energy E , the Helmholtz free energy F and the scaled entropy S per particle and per
unit volume. In addition we have a simple form of the equation of state.

From equation (89), we obtain the excess internal energy:
β	E

V
= −

∑
i

ρiδi K B̂i(z). (97)

For the 1-Yukawa case we have the explicit solution for B̂i , the excess energy parameter

B̂i =
∑

j

[Ji j ]−1

{
X j −

∑
j

[
δ jk − 2πσ j

	z2

(
1 +

zσk

2

)]
δk

}
. (98)

Now we observe that

Xi =
∑

k

[Mik]−1δk [Mi j ] ≡ Ii jδnm + Ji j�. (99)

The radial distribution function at contact is [13, 18]

gi j(σi j) − 2πσi j g
0
i j(σi j ) = 2π K Xi X j = −2�(z + �)

Xi X j

D2
= −(z + �)Xi a j (100)

where g0
i j(σi j ) is the contact radial distribution function for a hard-sphere mixture, X j is given

by equation (22) and

D2 =
∑

k

ρk X2
k . (101)

We have used β = 1/(kB T ), where kB is Boltzmann’s constant and T is the absolute
temperature.

The excess entropy density 	S is given by [6, 16]

	S

kV
= −

(
�3

3π
+

z�2

2π

)
. (102)

Notice also that
1

2
(χ−1 − χ−1

0 ) = 1

2

[∑
k

ρk

[
Ak

2π

]2

− χ−1
0

]
. (103)

In fact∑
k

ρk

8π2
[(Ak)

2 − (A0
k)

2] =
∑

k

ρk

8	π
ak Pn

{
2A0

k +
π

	
ak Pn

}

= Pn

4π	

∑
k

ρkak A0
k +

P2
n

8	2

∑
k

ρka2
k

Pn

4π	

∑
k

ρkak A0
k +

P2
n

8	2

∑
k

ρka2
k

= π K

2	2
Pn

[
Pn +

z

2
	n

]
= −�(z + �)

4D2	2
Pn

[
Pn +

z

2
	n

]
(104)

where we have used
1

π

∑
k

ρkak A0
k = zπ K

	
	n

∑
k

ρka2
k = 4π K .

Finally the excess pressure is

	P E

ρkB T
= −

(
�3

3π
+

z�2

2π

)
+

π K

2	2
Pn

{
Pn +

z

2
	n

}
. (105)
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